Dusty disks around brown dwarfs

Alexander Scholz
(University of Toronto)

Ray Jayawardhana (UoT)
Kenneth Wood (St. Andrews)
Gwendolyn Meeus (AIP)
Christina Walker (St. Andrews)
Mark O’Sullivan (St. Andrews)
Origins of brown dwarfs

‘in situ’ formation
- ultra-low-mass stars -

ejection as embryos
- failed stars -

signature of formation: binarity, kinematics, **accretion disks**
Planet formation?

brown dwarf disks: testbed for universality and efficiency of planet formation

inner disk clearing

grain growth
Brown dwarfs in T Tauri phase

1st part: fundamental disk parameters from mm fluxes
2nd part: disk evolution (dust settling, chemistry) from MIR SEDs
BD disks in the pre-Spitzer era

Mohanty et al. (2004)

constraints from MIR-SEDs: flared disk, flat disks, grain growth but only 1 object with SED from NIR to mm

Pascucci et al. (2003)
A 1.3mm survey in Taurus

IRAM 30m telescope with MAMBOII, Pico Veleta (Spain)

20 sources with SpT>M6, noise level <1mJy for all objects
Fluxes and disk masses

20 sources, 6 detections, flux levels: <0.7... 7 mJy
transformation to disk masses: <0.4... 2.4 Jupiter masses

relative disk masses comparable from 0.02 to 3 Ms
no trend to lower disk masses in the brown dwarf regime
Enter Spitzer

IRAC+MIPS available for all Taurus sources:
NIR (2MASS) + MIR (Spitzer) + mm (IRAM)

IRAC photometry: 3-8 \(\mu m \)
IRS spectroscopy: 8-13 \(\mu m \)
MIPS photometry: 24 \(\mu m \)
SED modeling

minimum outer disk radius for objects with mm detection: 10 AU

evidence for dust settling

>25% of the objects have disks with radii >10AU

Scholz, Jayawardhana, Wood 2006
Origins of brown dwarfs

signature of ejection: truncated disks (low masses, small radii)
no evidence for disk truncation from masses and radii
⇒ ejection probably not the dominant formation mode
Evolution of brown dwarf disks

Spitzer GO program to study 36 brown dwarf disks in Up Sco

IRS spectroscopy + MIPS photometry

Inner disk geometry and chemistry after 5 Myr

Preliminary results
Scholz et al., in prep.
Clear dichotomy: 33-36% objects with 24μm excess, i.e. disks
Young vs old: dust settling

2Myr: large diversity, flaring in many objects
5Myr: almost all disks have flat SEDs ⇒ dust settling finished

uniformity of SEDs: default disk at 5Myr
Young vs old: chemistry

Chal (Apai et al. 2005)

2Myr: strong and diverse Si, amorphous and crystallines

5Myr: weak or absent Si ⇒ grain growth and/or dust settling, processed dust (see poster, Meeus et al.)

UpSco
Conclusions

Brown dwarf disk properties from mm/MIR SEDs:

- brown dwarf disk masses: <0.4... 2.4 Mjup
- no trend in relative disk masses from 0.02 to 3 Msol
- disk radii >10AU for at least 25% of the objects
- ejection unlikely: the dominant formation scenario
- at 5Myr: disk frequency 33-36%,
- disk dissipation timescales comparable to stars
- uniform disk SEDs, most disks are flat
- dust settling, grain growth, dust processing
- prerequisites for planet formation